On a Class of Nonsmooth Composite Functions
نویسنده
چکیده
We discuss in this paper a class of nonsmooth functions which can be represented, in a neighborhood of a considered point, as a composition of a positively homogeneous convex function and a smooth mapping which maps the considered point into the null vector. We argue that this is a sufficiently rich class of functions and that such functions have various properties useful for purposes of optimization
منابع مشابه
On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملGradient Sliding for Composite Optimization
We consider in this paper a class of composite optimization problems whose objective function is given by the summation of a general smooth and nonsmooth component, together with a relatively simple nonsmooth term. We present a new class of first-order methods, namely the gradient sliding algorithms, which can skip the computation of the gradient for the smooth component from time to time. As a...
متن کاملProximally Guided Stochastic Subgradient Method for Nonsmooth, Nonconvex Problems
In this paper, we introduce a stochastic projected subgradient method for weakly convex (i.e., uniformly prox-regular) nonsmooth, nonconvex functions—a wide class of functions which includes the additive and convex composite classes. At a high-level, the method is an inexact proximal point iteration in which the strongly convex proximal subproblems are quickly solved with a specialized stochast...
متن کاملComposite proximal bundle method
We consider minimization of nonsmooth functions which can be represented as the composition of a positively homogeneous convex function and a smooth mapping. This is a sufficiently rich class that includes max-functions, largest eigenvalue functions, and norm-1 regularized functions. The bundle method uses an oracle that is able to compute separately the function and subgradient information for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Oper. Res.
دوره 28 شماره
صفحات -
تاریخ انتشار 2003